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Polarization in semileptonic B → Xτ decays?

M. Jeżabek1,2 P. Urban1

1 Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40007 Katowice, Poland
2 Institute of Nuclear Physics, Kawiory 26a, 30055 Cracow, Poland

Received: 14 January 1999 / Revised version: 14 May 1999 / Published online: 14 October 1999

Abstract. The paper gives the polarization of the tau lepton in the semileptonic B decays with respect to
the direction of the virtual W boson. The result given includes the nonperturbative HQET corrections.
The perturbative QCD corrections are probably negligible, as is suggested by the existing results for the
longitudinal polarization of the charged lepton (Jeżabek and Urban, 1998).

1 Introduction

The interest in semileptonic B decays is currently increas-
ing as the B factory in KEK is scheduled to begin to collect
data later this year. This domain of physics is likely to up-
grade our knowledge of the standard model parameters as
well as to provide tests on its validity. The semileptonic
B decays can contribute to the former as their theoreti-
cal description is now far more successful than that of the
hadronic processes [1–5].

The polarization of the charged lepton does not depend
on the Cabibbo–Kobayashi–Maskawa matrix element, and
so it can be instrumental in finding the quark masses. In
a previous work, we have found the longitudinal polariza-
tion of the tauon, including first-order perturbative QCD
corrections, analytically [6] by taking the analytical de-
cay width for the unpolarized case [7] and calculating the
width for a negative polarization. The result can then be
integrated to give polarized tau energy distribution. The
method used in that calculation can easily be modified to
give other polarizations. This fact matters experimentally
insomuch as it is the polarization along the intermediating
W-boson direction that is easier to measure [8], see also
[9]. The reason is that the direction of the τ lepton can
be determined at B factories with rather poor accuracy.
On the other hand, the direction of W is opposite to the
direction of hadrons in semileptonic B decays. The latter
can be well measured at least for the exclusive B → Dτν̄τ

and B → D∗τ ν̄τ channels, which probably contribute the
dominant contribution to the inclusive decay rate.

The present calculation includes tree-level and HQET
corrections only. We are unable to calculate perturbative
QCD corrections because the analytic structure of expres-
sions is far more complicated than in the case of the lon-
gitudinal polarization [6]. However, indications exist that
the effects of perturbative QCD corrections on τ polar-
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ization are negligible. In particular, the above-mentioned
longitudinal polarization does not change visibly after the
first-order perturbative corrections have been included ei-
ther in the rest frame of the W boson [10] or that of the
decaying quark [6].

The paper is broken up into four sections. In Sect. 2,
kinematical variables are introduced. Sections 3 and 4 ex-
plain the method used in the calculation, and then the re-
sults are shown is Sect. 5. In Appendix A, some details of
HQET calculations are explained including the discussion
of singularity problems. Such problems have also been en-
countered in [11], where a method was proposed for elim-
inating them.

2 Kinematical variables

In this section, we define the kinematical variables used
throughout the article as well as their boundaries. The
calculation is performed in the rest frame of the decaying
B meson, which coincides with that of the b quark at the
tree level in the parton model. The four-momenta of the
particles are denoted as follows: Q for the b quark, q for
the c quark, W for the virtual W boson, τ for the charged
lepton, and ν for the corresponding antineutrino. All the
particles are assumed to be on shell so that their squared
four-momenta equal their masses:

Q2 = m2
b , q2 = m2

c , τ2 = m2
τ , ν2 = 0 . (1)

The employed variables are scaled to the units of the de-
caying quark mass mb:

ρ =
m2

c

m2
b

, η =
m2

τ

m2
b

, y =
2Eτ

mb
, t =

W 2

m2
b

, x =
2Eν

mb
.

(2)
Henceforth we scale all quantities so that m2

b = Q2 = 1.
The charged lepton is described by the light-cone vari-
ables:

τ± =
1
2

(
y ±

√
y2 − 4η

)
. (3)
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The W boson is characterized likewise:

w0 =
1
2
(1 + t − ρ) , (4)

w3 =
√

w2
0 − t , (5)

w± = w0 ± w3 . (6)

The phase space is defined by the ranges of the kinematical
variables:

2
√

η ≤ y ≤ 1 + η − ρ = ym , (7)

tmin = τ−

(
1 − ρ

1 − τ−

)
≤ t ≤ τ+

(
1 − ρ

1 − τ+

)
= tmax . (8)

The limits above are obtained within the parton model
approximation. They change if we allow for Fermi motion,
which we must in order to be able to discuss the HQET
corrections to the decay widths [11–15]. Also, contrary to
the parton model case, the energy of neutrino can vary
within limits which depend in a nontrivial manner on the
values of the variables y, t. The details of this subject have
been discussed in [12], so we will state here only that the
integrations involving delta functions and their derivatives
have the effect of confining the range of the variables y, t
to that of the parton model.

3 Polarization evaluation

The polarization is found by evaluation of the unpolarized
decay width and any of the two corresponding to a definite
polarization, according to the definition,

P =
Γ+ − Γ−

Γ+ + Γ− = 1 − 2
Γ−

Γ
, (9)

where Γ = Γ+ + Γ−. The calculation of the polarized
width is structured in the manner of that which has yielded
the longitudinal polarization [6]. Thus in the rest frame of
the decaying quark, one can decompose:

s = AQ + BW . (10)

The coefficients A,B can be evaluated with the conditions
defining the polarization four-vector s; these conditions
reduce to the following when the parton model value of
the neutrino energy is assumed:

A±
0 = ∓ t + η√

t(y − y−)(y+ − y)
, (11)

B±
0 = ± y√

t(y − y−)(y+ − y)
, (12)

where the superscripts at A,B denote the polarization of
the lepton,while

y± = (1 + η/t)w± . (13)

This observation is made relevant by the fact that the de-
cay width for a definite polarization of the charged lepton
is gotten from the analogous expression for the unpolar-
ized case,

dΓ0 = G2
F M5

b |VCKM|2Mun
0,3dR3(Q; q, τ, ν)/π5 (14)

where
Mun

0,3(τ) = q · τQ · ν , (15)

by formal replacement of the lepton four-momentum by
the following four-vector K:

K = τ − mτs . (16)

Then we obtain

Mpol
0,3 =

1
2
Mun

0,3(K = τ − ms) =
1
2
(q · K)(Q · ν) . (17)

Although the expressions above are written for the Born
approximation, corrections received by the hadronic ten-
sor obviously do not alter this scheme, so we can apply
it to the HQET calculations, too. However, we need to
reevaluate the coefficients in the decomposition (10), tak-
ing into account the Fermi motion and working in the rest
frame of the decaying meson. For a derivation of these,
cf. Appendix A. Applying now the representation (10) of
the polarization four-vector s we readily obtain the follow-
ing useful formula for the matrix element with the lepton
polarized:

M± =
1
2
Mun(τ) ±

√
η√

y(t + η)(x + y) − y2t − (t + η)2

× [yMun(W ) − (t + η)Mun(Q)] . (18)

The above expression is valid for the HQET corrections
too. The first term on the right hand side of (18) can be
calculated immediately once we know the result for the
unpolarized case. Then the other terms require the formal
replacement of the four-momenta, τ → W and τ → Q, in
the argument.

4 Evaluation of HQET corrections

Using the operator expansion technique, one can obtain
corrections to the decay widths of heavy hadrons which
effectively lead to new terms in the hadronic tensor ap-
pearing in the triple differential decay width,

dΓ

dxdtdy
=

|Vcb|2G2
F

2π3 LµνWµν . (19)

The hadronic tensor W, related to an inclusive decay of a
beautiful hadron Hb,

Wµν = (2π)3
∑
X

δ4(pHb − q − pX)

×〈Hb(v, s)|Jc†
µ |X〉〈X|Jc

ν |Hb(v, s)〉 (20)
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can be expanded in the form

Wµν = −gµνW1 + vµvνW2 − iεµναβvαqβW3

+qµqνW4 + (qµvν + vµqν)W5 . (21)

The form factors Wn can be determined by use of the
relation between the tensor W and the matrix element of
the transition operator

Tµν = −i
∫

d4xe−iqxT [Jc†
µ (x)Jc

ν(0)] , (22)

which is
Wµν = − 1

π
Im〈Hb|Tµν |Hb〉 . (23)

The coefficients Wn of (21) have all been found elsewhere,
see, e.g., [12] for a complete list. Then the distribution
(19) can be schematically cast in the following form:

dΓ

dxdtdy
= f1δ(x−x0)+f2δ

′(x−x0)+f3δ
′′(x−x0) , (24)

where
x0 = 1 + t − ρ − y (25)

is the value of the neutrino energy in the parton model
kinematics. The triple differential distribution must be
integrated over the neutrino energy to give meaningful
results. The final lepton energy distribution obtained on
two subsequent integrations may be trusted, except for
the endpoint region where the operator product expansion
fails. In the present paper, we give the double differential
distribution so that the lepton energy distribution has to
be obtained numerically. The calculation does not show
any features that are not familiar from the cases of the
other known polarizations.

5 Results

5.1 Double differential distribution

The polarized distribution can be written in the form,

1
Γ0

dΓ±

dy dt
=

1
2
F un ±

(
F̃ + F̃+ − F̃−

)
, (26)

where

Γ0 =
G2

F m5
b

192π3 |VCKM|2 . (27)

The first term on the right-hand side of (26) stands for the
unpolarized distribution, given, e.g., in [12], (30). Here we
will give only the new other term1:

F̃ =
√

η W [
6f1 + KbW (

f2 + f3W2 + 3
2f4W4)

+Gb
(
f5 + f6W2)] , (28)

1 A FORTRAN code for this formula is available from pi-
otr@charm.phys.us.edu.pl

where

f1 = −yt(1 + ρ − η) + 2yt2 − y(1 + ρη − 2ρ + ρ2 + η)
−y2t + y2(1 − ρ) + t(1 + 2ρη − ρ2) + t2(2ρ − η)
−t3 − ρ2η + η , (29)

f2 = −8yt(1 − ρ + η) − 16yt2 + 8y(1 + ρη − 2ρ + ρ2 − η)
+6y2t − 6y2(1 − ρ) + 2t(1 − 6ρη − 4ρ + 3ρ2 + 12η)
+2t2(8 − 6ρ + 3η) + 6t3 − 8ρη + 6ρ2η

+2η + 8η2 , (30)

f3 = yt(−10ρη + 6ρη2 + 14ρ2η + 9ρ2η2 − 6ρ3η + 2η

+9η2 − 4η3) + yt2(1 − 9ρη2 − 5ρ + 18ρ2η + 7ρ2

−3ρ3 + 6η − 13η2) + yt3(1 − 18ρη − 2ρ + 9ρ2 − 14η

+3η2) − yt4(5 + 9ρ − 6η) + 3yt5 + y(−5ρη2 + 4ρη3

+7ρ2η2 − 3ρ3η2 + η2 + 4η3) + y2t(1 + 14ρη + 2ρη2

−3ρ − ρ2η + 3ρ2 − ρ3 − 13η + 8η2) + y2t2(−6 + 5ρη

+6ρ + 15η − η2) + y2t3(7 + 3ρ − 3η) − 2y2t4 + y2η

×(−3ρ + 8ρη + 3ρ2 − ρ2η − ρ3 − 7η + 1)
+y3t(1 − ρ)2 − y3t2η − y3t3 + y3η(1 − ρ)2 , (31)

f4 = y2t(−6ρη2 − 2ρ2η3 + 6ρ3η2 + 4ρ3η3 − 3ρ4η2 + 3η2

−2η3) + y2t2(−6ρη − 2ρη3 − 6ρ2η2 − 6ρ2η3 + 6ρ3η

+12ρ3η2 − 3ρ4η + 3η − 6η2) + y2t3(1 − 6ρη2 + 4ρη3

−2ρ − 6ρ2η − 18ρ2η2 + 12ρ3η + 2ρ3 − ρ4 − 6η

+2η3) + y2t4(−2 − 6ρη + 12ρη2 − 18ρ2η − 2ρ2

+4ρ3 + 6η2 − η3) + y2t5(12ρη − 2ρ − 6ρ2 + 6η

−3η2) + y2t6(2 + 4ρ − 3η) − y2t7 + y2(−2ρη3

+2ρ3η3 − ρ4η3 + η3) + y3t(8ρη + ρη2 + 2ρη3

−12ρ2η + ρ2η2 + 3ρ2η3 + 8ρ3η − ρ3η2 − 2ρ4η − 2η

−η2 + 3η3) + y3t2(−1 − ρη + 6ρη2 − 3ρη3 + 4ρ

−ρ2η + 9ρ2η2 − 6ρ2 + ρ3η + 4ρ3 − ρ4 + η + 9η2

−3η3) + y3t3(1 + 6ρη − 11ρη2 − ρ + 9ρ2η − ρ2 + ρ3

+9η − 11η2 + η3) + y3t4(3 − 13ρη + 2ρ + 3ρ2 − 13η

+4η2) + y3t5(−5 − 5ρ + 5η) + 2y3t6 + y3(4ρη2

+ρη3 − 6ρ2η2 + ρ2η3 + 4ρ3η2 − ρ3η3 − ρ4η2 − η2

−η3) + y4t(−6ρη + 2ρη2 + 6ρ2η + ρ2η2 − 2ρ3η + 2η

−3η2) + y4t2(1 + 4ρη + ρη2 − 3ρ + 2ρ2η + 3ρ2 − ρ3

−6η + 3η2) + y4t3(−3 + 2ρη + 2ρ + ρ2 + 6η − η2)
+y4t4(3 + ρ − 2η) − y4t5 + y4(−3ρη2 + 3ρ2η2

−ρ3η2 + η2) , (32)

f5 = 4yt(3 + 5ρ − 5η) − 40yt2 + 4y(1 + 5ρη − 6ρ + 5ρ2

+η) + 10y2t − 2y2(1 − 5ρ) − 6t(1 + 10ρη − 5ρ2)
−2t2(4 + 30ρ − 15η) + 30t3

+30ρ2η − 6η + 8η2 , (33)

f6 = yt(−18ρη − 2ρη2 + 6ρ2η − 15ρ2η2 + 10ρ3η + 2η

+17η2 − 4η3) + yt2(1 − 16ρη + 15ρη2 − 9ρ − 30ρ2η

+3ρ2 + 5ρ3 + 10η − η2) + yt3(1 + 30ρη − 10ρ

−15ρ2 + 10η − 5η2) + yt4(7 + 15ρ − 10η) − 5yt5
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+y(−9ρη2 + 4ρη3 + 3ρ2η2 + 5ρ3η2 + η2 + 8η3)
+y2t(−1 + 30ρη − 10ρη2 + 7ρ + 5ρ2η − 11ρ2 + 5ρ3

−11η − 4η2) + y2t2(−2 − 25ρη + 18ρ − 19η + 5η2)
−15y2t3(1 + ρ − η) + 10y2t4 + y2(7ρη + 12ρη2

−11ρ2η + 5ρ2η2 + 5ρ3η − η − 9η2)
+y3t(1 − 6ρ + 5ρ2 + 8η) + y3t2(8 − 5η) − 5y3t3

+y3(−6ρη + 5ρ2η + η) , (34)

F̃± =
√

η W±
{[

Kb
(
h1,± + h2,±W±2) + Gbh3,±

]
δ(z±)

+Kbh4,±δ′(z±)} , (35)

where

h1,± = −8ytη + 8yη2 + 4y2t + 12y2η + 2y3t − 2y3η

−2y4 − 16tη − 16η2 − 4σ± (6yt − 2yη + 3y2t

+y2η − y3 − 8tη − 4t2 − 4η2) − 8σ2
± (3yt − yη

−5y2 + 4t + 4η) + 16σ3
±(3y + t + η) , (36)

h2,± = 2σ± y (8tη2 + 16t2η + 8t3 − 4ytη2 + 4yt3 − 8y2tη

−6y2t2 − 2y2η2 − y3t2 + y3η2 + y4t + y4η)
+4σ2

± y (−4tη2 − 8t2η − 4t3 − 12ytη − 8yt2

−4yη2 + 2y2tη − y2t2 + 3y2η2 + 3y3t + 3y3η)
+8σ3

± y (−4tη − 2t2 − 2η2 + 4ytη + yt2 + 3yη2

+3y2t + 3y2η) + 16σ4
± y (2tη + t2 + η2

+yt + yη) , (37)

h3,± = −16ytη − 8yt + 8yt2 + 8yη + 8yη2 − 8y2t + 8y2η

+24t2 − 24η2 + 4σ± (−10yt − 14yη − 5y2t

+5y2η − 4y2 + 5y3 + 12t − 4t2 + 12η + 4η2)
+16σ2

± (5yη − 2y + 5y2 − 9t − 9η)

+80σ3
± (y + t + η) , (38)

h4,± = 4σ± (4ytη − 4yt2 + 6y2t + 2y2η + y3t − y3η

−y4 − 8tη − 8t2) + 8σ2
± (8yt + 4yη + y2t − 3y2η

−3y3 + 4tη + 4t2) − 16σ3
± (yt + 3yη + 3y2

−2t − 2η) − 32σ4
± (y + t + η) , (39)

and

W± =
1√

y(t + η)(2σ± + y) − y2t − (t + η)2
, (40)

W =
1√

y(t + η)(x0 + y) − y2t − (t + η)2
, (41)

σ± = (t − η)/(2τ±) , z± = 1 + t − ρ − y − 2σ± . (42)

The parameters Kb, Gb, representing the kinetic energy
and the chromomagnetic energy, are defined according to
[13].

5.2 Lepton energy distribution

As regards the HQET correction terms, we give the en-
ergy distribution only in the form of a diagram evaluated
numerically. Below, we also give the Born-level approxima-
tion analytically. The analytic formulas for the polarized
distribution can be simplified if we split the kinematical
range of y into two parts, separated by the value of the
charged lepton energy where the virtual W boson can stay
at rest. This value is

yW = 1 − √
ρ +

η

1 − √
ρ

. (43)

In the formulas below, the superscripts A, B refer to the
appropriate regimes:

y < yW region A , (44)
y > yW region B . (45)

The energy distribution of the polarized τ lepton reads

dΓ±

dy
= 12Γ0

[
1
2
f(y) ± ∆f(y)

]
. (46)

The function f(y) represents the unpolarized case,

f(y) =
1
6
ζ2

√
y2 − 4η

{
ζ

[
y2 − 3y(1 + η) + 8η

]
+(3y − 6η)(2 − y)} , (47)

with
ζ = 1 − ρ

1 + η − y
. (48)

The function ∆f(y) reads

∆f(y) =
3
8

√
η|y − 1| φ1Ψ +

1
4
η φ2 , (49)

with

φ1 = −5λ3/(y − 1)4 + 3λ(4η − λ − λ2)/(y − 1)3 + (4ηλ

−4η + λ + 7λ2 + λ3)/(y − 1)2 + (−1 + 4ηλ − 28η

+15λ − λ2 − λ3)/(y − 1) − 1 + 12yη − 11yλ

+7y − y2 + 12ηλ − 24η + 14λ − 11λ2 , (50)

φA
2 =

√
y2 − 4η

[
15λ2ξ/(y − 1)3 + (10ηλξ2 − 16ηξ

+24λξ − 10λξ2 − 20λ − 6λ2ξ)/(y − 1)2 + (−4
−14ηλξ2 − 48ηξ + 66ηξ2 − 24ηξ3 + 8η2ξ3 − 76λξ

+14λξ2 + 48λ + 3λ2ξ + 25ξ − 26ξ2 + 8ξ3)/(y − 1)
+3 − 3y + 57ηξ − 22ηξ2 − 12λξ − 21λ + 34ξ

−18ξ2 + 8ξ3] , (51)

φB
2 = 15ζλ2/(y − 1)3 + (60ηζλ − 16ηζ − 30ηζ2λ − 16ζλ

−21ζλ2 + 10ζ2λ)/(y − 1)2 + (−104ηζλ − 84ηζ

+52ηζ2λ + 122ηζ2 − 40ηζ3 + 160η2ζ − 160η2ζ2

+40η2ζ3 − 24ζλ + 9ζλ2 + 17ζ − 4ζ2λ − 22ζ2
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+8ζ3)/(y − 1) + 18 − 29yη + 27yλ − 21y + 3y2

+46ηζλ − 59ηζ − 14ηζ2λ + 78ηζ2 − 16ηζ3 − 71ηλ

+59η − 43η2ζ + 26η2ζ2 − 8η2ζ3 + 46η2 − 6ζλ

−3ζλ2 + 69ζ − 6ζ2λ − 52ζ2 + 16ζ3

−42λ + 24λ2 , (52)

where
ξ = 2 − ζ , λ = ρ + η . (53)

The function Ψ can be written in the form

Ψ =

{
arccos ωmin − arccos ωmax , y < 1
arcosh ωmax − arcosh ωmin , y > 1

(54)

with

ωmin,max =
2(y − 1)tmin,max + y(ym − y) − 2η

y
√

(ym − y)2 + 4ηρ
. (55)

Because of terms containing inverse powers of (y − 1), the
expression (49) for ∆f(y) is apparently divergent at y = 1.
However, expanding ∆f(y) in powers of (y − 1), for y < 1
and y > 1 one can check that this function is regular at
y = 1.

The HQET contribution to the decay distributions is
known to render them unreliable near the endpoint values
of the tauon energy. This ambiguity reveals itself in the
polarization as well. Similar problems appear in calcula-
tions of perturbative corrections [16,17]. All these prob-
lems are cured if instead of distributions, their moments
are considered [10,18,19]. In the case of τ polarization, a
better-defined quantity is the integrated polarization

Pint(ȳ) =
∫ ȳ

ymin

dy

(
dΓ+

dy
− dΓ−

dy

)
/∫ ȳ

ymin

dy

(
dΓ+

dy
+

dΓ−

dy

)
(56)

where both the lowest-order perturbative and the HQET
terms are included. In Fig. 1, the integrated polarization
is shown as a function of the scaled energy y of the τ
lepton. The lowest-order prediction corresponds to the
dashed line, and the solid line is obtained with the in-
clusion of HQET corrections. The question that arises is
whether the perturbative QCD corrections can change this
result significantly. As has already been suggested in the
introduction, it is plausible that no such thing happens.

On integration over the whole range of the charged
lepton energy, one arrives at the total polarization at the
tree level corrected for the O(1/m2

b) effects as predicted
by HQET. For mb = 4.75 GeV and mc = 1.35 GeV, we
obtain

P = −0.7235 + 4.21
Kb

m2
b

+ 1.48
Gb

m2
b

. (57)

Taking Kb = 0.15 GeV2 and Gb = −0.18 GeV2, we obtain
P = −0.706.

Although we are mostly concerned with the tau lep-
ton polarization here, the formulas derived in the present

Fig. 1. Integrated polarization of the τ lepton along the di-
rection of virtual W in the Born approximation (dashed) and
including HQET corrections (solid) as functions of the scaled
τ energy y. The mass of the b quark is taken to be 4.75GeV,
and the c quark, 1.35GeV

work may well be used in evaluating the polarization of
the light leptons. Interestingly, in the limit of a vanishing
mass of the charged lepton the polarization falls to zero,
apart from the endpoints; cf. (49) and (28). It is due to
the chiral V − A structure of the weak charged current
that, according to (17), the decay widths with a definite
polarization differ by a term proportional to mτsµ. The
polarization four-vector of the charged lepton can be de-
composed as follows:

sµ =
(
s0, ~s

)
=

(
p

m

√
1 − (~s⊥)2, ~s⊥,

E

m

√
1 − (~s⊥)2

)
,

(58)
where ~s⊥ is understood to mean the part of the three-
vector ~s perpendicular to the direction of the charged lep-
ton. The quantities E and p denote, respectively, the en-
ergy and the three-momentum value of the charged lepton.
This form can easily be seen to meet the definition of the
polarization four-vector; cf. Appendix A. As the lepton
mass approaches zero, (58) gives

msµ ≈
√

1 − (~s⊥)2 τµ + m (0, ~s⊥, 0) . (59)

However, if we want to keep the angle subtended by the
polarization vector and the lepton momentum constant,
the parallel part of the polarization should be propor-
tional to the perpendicular one, thereby forcing the factor
of

√
1 − (~s⊥)2 to be of order of m/E. Then the right-hand

side of (59) tends to zero for m → 0. For the vanishing
charged lepton mass the polarization can be nonzero only
where the virtual W boson is collinear with the charged
lepton. In general, the contribution to polarization is ap-
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preciable for only the W direction within the cone defined
by the condition

|~s⊥|/|~s| = O(m/E) . (60)

In particular, this happens if p is much larger than the
energy of the neutrino. For semitauonic B decays, the con-
dition (60) is satisfied in the whole phase space and the
resulting polarization is fairly large.

6 Summary

The polarization of the tau lepton along the W-boson di-
rection in semileptonic B decays has been found at the tree
level in perturbative QCD, and the leading-order HQET
corrections have been included. The quantity is of exper-
imental interest. The fact that it does but slowly vary of
the charged lepton is rather favorable in this context [8].
The QCD one-loop corrections are unknown but their ir-
relevance for the longitudinal polarization both in the rest
frame of the decaying quark and that of the W boson in-
dicates that no great change is to be expected once they
are incorporated.
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A The HQET calculations

We will presently construct the four-vector s representing
a charged lepton polarized along the direction of the W
boson. The defining properties of s are

s2 = −1 (61)

and
s · τ = 0 , (62)

complemented by the relation ~s ‖ ~W . Since we are working
in the rest frame of the decaying meson, the four-vector s
can be decomposed as

s = Av + BW , (63)

where v and W stand for the four-velocity of the B meson
and the four-momentum of the intermediate W boson, re-
spectively. While this form automatically satisfies ~s ‖ ~W ,
the other two relations (61) and (62) have to be imposed,
hence yielding the expressions for the coefficients appear-
ing in (63). With v = (1, 0, 0, 0), one readily identifies:

v · τ = y/2 , v · ν = x/2 , v2 = −1 . (64)

These combined with the other dot products lead to the
following formulas:

A± =
∓(t + η)√

y(t + η)(y + x) − y2t − (t + η)2
, (65)

B± =
±y√

y(t + η)(y + x) − y2t − (t + η)2
. (66)

The evaluation of the HQET corrections involves differ-
entiation over the neutrino energy, either once or twice.
The denominator in the above expressions is easily seen
to vanish at the point where the W boson is at rest. It is
known that the kinematics of the process, together with
the delta functions and their derivatives, finally reduces
to integration over the partonic phase space. Then there
is one point where the denominator vanishes:

y = 1 − √
ρ +

η

1 − √
ρ

, (67)

t = (1 − √
ρ)2 . (68)

One might thus raise the question of analyticity of the ex-
pressions obtained in this way. However, the divergences
cancel, and moreover, the resulting distribution is continu-
ous if we ignore the endpoint behavior. That this is indeed
so may be verified by changing the variables from t to the
square of the three-momentum of the W boson. Then the
singularity makes its presence only on integration over w2

3
rather than affecting the analytical structure of the distri-
butions. It turns out that using this variable, one obtains
an analytic expression. This becomes clear once one no-
tices that the only terms that occur in the course of the
calculation are the dot products of the four-vector s and
the other four-vectors. Writing them out explicitly,

s+ · v =
τ3 cos θ√

y2 − τ3 cos2 θ
, (69)

s+ · W =
(y + x)τ3 cos θ − 2yw3

2
√

y2 − τ3 cos2 θ
, (70)

with

cos θ =
w2

3 − η − (x − y)/4
w3τ3

, (71)

where the subscript denotes the polarization direction, we
easily verify that the triple differential distribution is an-
alytic in the neutrino energy. Lastly, let us note that an-
other change of variable can be useful for evaluating the
distribution; namely, using the cosine of the angle sub-
tended by the tau lepton and the neutrino [11] eliminates
the singular terms from the double differential distribu-
tion. We have checked numerically that the resulting dis-
tribution is the same.
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